Alaska’s Sweet Clover Infestation Problem - Analysis & Recommendation

Chase Hand and Maggie Dunleavy
Correspondence Study School 10th Grade
February 24, 2007

Introduction

Sweet Clover is a biennial plant that can reach 2-5 feet in height and is considered an invasive weed in Alaska. It was originally brought to North America as forage crops, since then it has spread across Alaska and thrives near roadways, around rivers, and newly cleared areas. Sweet Clover has formed large, nonspecific stands along rivers in Southeast, South Central, and Interior Alaska. The weed degrades natural grassland communities by overtopping and shading native species.

It also has great potential to reproduce and spread rapidly. Each plant produces 350,000 seeds that can remain viable in the soil for up to 81 years. Large seed banks are common, and it can self-pollinate as well as outcross. Seeds are easily dispersed by water and vehicle tires. These factors make river and stream crossings along with road banks a prominent place for seeds to take hold.

The primary concern to Alaska is the potential damage Sweet Clover can cause to river systems. It is also an invasive plant, found along Alaska’s riverbanks with a woody root system with numerous root hairs. This type of root system helps hold the soil, which slows down the rate of riverbank erosion. Sweet Clover has a tap root which does not hold the soil and therefore the rate of riverbank erosion is higher. Also, Sweet Clover alters the fixed nitrogen in the soil which makes it unlikely for some plants to populate. Therefore, besides causing the rate of riverbank erosion to increase, Sweet Clover promotes out competitions a native plant species thereby affecting the local ecosystem and those species that depend upon it. Our goal was to determine which category of river is the most susceptible to Sweet Clover infestation and where government agencies should focus their remediation work.

Results

Our results indicated:

- Sweet clover is present at the majority of all the bridges over bodies of water. It is present in the riverbed of all the multi water streams that we documented. It was not present in the riverbed of any of the black water streams. It was not present in the clear water streams with one exception.

- It is present in the riverbed of all the multi water streams that we documented.

- It was not present in the clear water streams with one exception.

- It was not present in the black water streams.

- It was present at the majority of all the bridges over bodies of water.

Conclusions

- We found that Sweet Clover is predominately found in unconsolidated sediments along roadways and in melt water river beds.

- We found that Sweet Clover was not present in black water and clear water stream beds.

- The intensity of Sweet Clover infestation varies with the amount of the vehicle traffic along roadways.

Recommendation

- The major focus of control work should be on roadways that have heavy amounts of vehicle traffic, and cross tributaries to melt water rivers.

- Roadways which cross clear water streams that do not drain into melt water rivers, and have intense concentrations of Sweet Clover should be second in priority.

- Roadways crossing black water streams that are not tributaries to melt water rivers should be lowest in priority.

Materials and Methods

The materials used in our project were a Garmin eTrex Legend GPS, a road map of the Matanuska-Susitna Valley, a Pentax Optio digital camera, and a Dell laptop computer with ArcGis software.

We used information obtained from the Palmer Soil and Water Conservation District to locate potential sites that we could visit, along with a classification system developed by the United States Geological Survey that helped us categorize the rivers and streams we visited. At each site we took a GPS waypoint, along with digital pictures of the area. Notes were written in a field notebook indicating the intensity of Sweet Clover infestation.

Our GPS data was downloaded onto the Dell computer, and ArcGis software was used to identify locations on topographic maps of the area.

Literature cited


Acknowledgements:

The authors would like to thank Dr. Cathy Conner, the Palmer Soil and Water Conservation District, and all the other nice people who helped us with our data collection.

USGS – Three general classes of water discharging into Mat-Su Valley

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clear water rivers</td>
<td>i.e. Moose Creek</td>
<td>Low sediment load</td>
</tr>
<tr>
<td></td>
<td>Originate from gw discharge zones;</td>
<td>Typically smaller tributaries</td>
</tr>
<tr>
<td>Black water dominated rivers</td>
<td>i.e. Deshka River</td>
<td>Low sediment load</td>
</tr>
<tr>
<td>Melt Water dominated rivers</td>
<td>i.e. Matanuska River</td>
<td>High sediment load</td>
</tr>
</tbody>
</table>

Road signs:

- Clear water
- Black water
- Melt water
- In the riverbed
- High intensity
- Low intensity
- Not present

Map showing Sweet Clover Locations and River Categories.